首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30967篇
  免费   2895篇
  国内免费   3002篇
  2024年   59篇
  2023年   657篇
  2022年   567篇
  2021年   1058篇
  2020年   1276篇
  2019年   1453篇
  2018年   1240篇
  2017年   1208篇
  2016年   1204篇
  2015年   1503篇
  2014年   1761篇
  2013年   2740篇
  2012年   1354篇
  2011年   1440篇
  2010年   1128篇
  2009年   1682篇
  2008年   1713篇
  2007年   1716篇
  2006年   1561篇
  2005年   1273篇
  2004年   1180篇
  2003年   993篇
  2002年   846篇
  2001年   747篇
  2000年   660篇
  1999年   572篇
  1998年   493篇
  1997年   525篇
  1996年   427篇
  1995年   397篇
  1994年   366篇
  1993年   378篇
  1992年   308篇
  1991年   268篇
  1990年   227篇
  1989年   230篇
  1988年   185篇
  1987年   172篇
  1986年   163篇
  1985年   198篇
  1984年   161篇
  1983年   124篇
  1982年   138篇
  1981年   118篇
  1980年   112篇
  1979年   77篇
  1978年   60篇
  1977年   46篇
  1976年   37篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 27 毫秒
51.
52.
53.
Tadmor is a Syrian barley landrace that has adapted to semi-arid environments. Its leaves are pale green because of a 30% decrease in the chlorophyll and the carotenoid content of the chloroplasts (leading to a 7·5% decrease in light absorption) compared with barley genotypes that are not adapted to harsh Mediterranean climatic conditions (e.g. Plaisant). This difference in pigment content was attenuated during growth of the plants in strong light, but was strongly amplified when strong light was combined with a high growth temperature. The low pigment content of Tadmor leaves was not associated with significant changes in the pigment distribution between the photosystems or between the reaction centres of the photosystems and their associated chlorophyll antennae. No significant difference in the photosynthetic activity (O2 production per unit absorbed light) was observed between Tadmor and Plaisant. The conversion of violaxanthin to zeaxanthin in strong light and its reversal in darkness were much faster and operated at a higher capacity in Tadmor leaves compared with Plaisant leaves, resulting in an increased photostability of photosystem II in the former leaves. The accelerated xanthophylls interconversion in the Syrian landrace was associated with, and possibly related to, an increased fluidity of the thylakoid membranes. The lipid peroxide level was lower in Tadmor compared with Plaisant. In contrast, no difference was found in the non-photochemical quenching of chlorophyll fluorescence between the two barley genotypes. The data indicate that the pale green Syrian landrace is equipped to survive excessive irradiance through a passive reduction of the light absorptance of its leaves, which mitigates the heating effects of strong light, and through the active protection of its photochemical apparatus by a rapid xanthophyll cycling.  相似文献   
54.
The ability of seedlings to tolerate temperature extremes is important in determining the distribution of perennial plants in the arid south-western USA, and the manner in which elevated CO2 impacts the ability of plants to tolerate high temperatures is relatively unknown. Whereas the effects of chronic high temperature (30–38°C) and elevated CO2 are comparatively well understood, little research has assessed plant performance in elevated CO2 during extreme (> 45 °C) temperature events. We exposed three species of Yucca to 360 and 700 μmol CO2 mol–1 for 8 months, then 9 d of high temperature (up to 53 °C) to evaluate the impacts of elevated CO2 on the potential for photosynthetic function during external high temperature. Seedlings of a coastal C3 species (Yucca whipplei), a desert C3 species (Yucca brevifolia), and a desert CAM species (Yucca schidigera), were used to test for differences among functional groups. In general, Yuccas exposed to elevated CO2 showed decreases in carboxylation efficiency as compared with plants grown at ambient before the initiation of high temperature. The coastal species (Y. whipplei) showed significant reductions (33%) in CO2 saturated maximum assimilation rate (Amax), but the desert species (Y. brevifolia and Y. schidigera) showed no such reductions in Amax. Stomatal conductance was lower in elevated CO2 as compared with ambient throughout the temperature event; however, there were species-specific differences over time. Elevated CO2 enhanced photosynthesis in Y. whipplei at high temperatures for a period of 4 d, but not for Y. brevifolia or Y. schidigera. Elevated CO2 offset photoinhibition (measured as Fv/Fm) in Y. whipplei as compared with ambient CO2, depending on exposure time to high temperature. Stable Fv/Fm in Y. whipplei occurred in parallel with increases in the quantum yield of photosystem II (ΦPSII) at high temperatures in elevated CO2. The value of ΦPSII remained constant or decreased with increasing temperature in all other treatment and species combinations. This suggests that the reductions in Fv/Fm resulted from thermal energy dissipation in the pigment bed for Y. brevifolia and Y. schidigera. The greater efficiency of photosystem II in Y. whipplei helped to maintain photosynthetic function at high temperatures in elevated CO2. These patterns are in contrast to the hypothesis that high temperatures in elevated CO2 would increase the potential for photoinhibition. Our results suggest that elevated CO2 may offset high-temperature stress in coastal Yucca, but not in those species native to drier systems. Therefore, in the case of Y. whipplei, elevated CO2 may allow plants to survive extreme temperature events, potentially relaxing the effects of high temperature on the establishment in novel habitats.  相似文献   
55.
Functional inactivation of the mitochondrial small heat-shock protein (lmw Hsp) in submitochondrial vesicles using protein-specific antibodies indicated that this protein protects NADH:ubiquinone oxidoreductase (complex I), and consequently electron transport from complex I to cytochrome c:O2 oxidoreductase (complex IV). Lmw Hsp function completely accounted for heat acclimation of complex I electron transport in pre-heat-stressed plants. Addition of purified lmw Hsp to submitochondrial vesicles lacking this Hsp increased complex I electron transport rates 100% in submitochondrial vesicles assayed at high temperatures. These results indicate that production of the mitochondrial lmw Hsp is an important adaptation to heat stress in plants.  相似文献   
56.
57.
《Cell》2021,184(20):5215-5229.e17
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   
58.
The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity1-5. The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time. Despite offering considerable advantages, multiple cantilever sensor arrays have never been applied in quantifying drug-target binding interactions.Here, we report on the use of silicon multiple cantilever arrays coated with alkanethiol self-assembled monolayers mimicking bacterial cell wall matrix to quantitatively study antibiotic binding interactions. To understand the impact of vancomycin on the mechanics of bacterial cell wall structures1,6,7. We developed a new model1 which proposes that cantilever bending can be described by two independent factors; i) namely a chemical factor, which is given by a classical Langmuir adsorption isotherm, from which we calculate the thermodynamic equilibrium dissociation constant (Kd) and ii) a geometrical factor, essentially a measure of how bacterial peptide receptors are distributed on the cantilever surface. The surface distribution of peptide receptors (p) is used to investigate the dependence of geometry and ligand loading. It is shown that a threshold value of p ~10% is critical to sensing applications. Below which there is no detectable bending signal while above this value, the bending signal increases almost linearly, revealing that stress is a product of a local chemical binding factor and a geometrical factor combined by the mechanical connectivity of reacted regions and provides a new paradigm for design of powerful agents to combat superbug infections.  相似文献   
59.
ABSTRACT

Low water potential, generated by PEG addition to the liquid medium of hydroponically grown pea seedlings, induces a fall in moisture content in the roots, followed by the arrest of elongation. This water stress reduces the mitotic index of root meristems during the treatment and induces the appearance of a peak of mitosis at 12 hours from the beginning of recovery. This peak suggests that during water stress the cell cycle is blocked in G2 or late S phase. In a first attempt to understand the biochemical events leading to cell cycle arrest, we tested the in vitro activity of DNA topoisomerase I extracted from stressed or control root meristems. The activity of this enzyme in extracts from stressed seedlings was lower than in controls, whereas it was higher in extracts from seedlings which had recovered from water stress for a few hours. The highest specific activity was observed with seedlings at 24 hours from the start of recovery. The fact that during stress treatments and recovery there was no variation in the synthesis of a 45 kDa protein, indicated as DNA topoisomerase I, suggested that the activity of this enzyme could be posttranslationally regulated. The hypothesis that variations in the concentration of unknown endogenous regulators of the activity of this enzyme may take place during water loss or uptake in the cytosol of meristematic cells is discussed.  相似文献   
60.
Diploid and triploid coho salmon Oncorhynchus kisutch transgenic for growth hormone (GH) and control coho salmon were compared for differences in disease resistance and stress response. Resistance to the bacterial pathogen Vibrio anguillarum was not affected in transgenic fish relative to their non‐transgenic counterparts when they were infected at the fry stage, but was lower in transgenic fish when infected near smolting. Vaccination against vibriosis provided equal protection to both transgenic and non‐transgenic fish. Triploid fish showed a lower resistance to vibriosis than their diploid counterparts. Diploid transgenic fish and non‐transgenic fish appeared to show similar physiological and cellular stress responses to a heat shock. These studies provide information useful for both performance and ecological risk assessments of growth‐accelerated coho salmon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号